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Abstract

Learning to teach mathematics for understanding is not easy. First, practice itself is
complex. Second, many teachers' traditional experiences with and orientations to
mathematics and its pedagogy are additional hindrances. This paper examines the territory
of practice and reviews some of what we know about those who would traverse
itprospective and experienced elementary teachers. In analyzing practice, the at;thor
focuses on mit major aspect of teacher thinking in helping students learn about fractions:
the construction of instructional representations. Considerations entailed are analyzed and
the enactment of representations in the classroom is explored. The tetin representational

context is used to call attention to the interactions and discourse constructed in a classroom-
around a particular representation. The author provides a window on her own teaching
practice in order to highlight the complexity inherent in the joint constructionwith
studentsof fruitful representational contexts. The paper continues with a discussion of
prospective and experienced teachers' knowledge, dispositions, and patterns of thinking
relative to representing mattematics for teaching. The author argues that attempts to help
teachers develop their practice in the direction of teaching mathematics for understanding
requires a deep respect for the complexity of such teaching and depends on taking teachers
seriously as learners.
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HALVES, PIECES, AND MOTHS: CONSTRUCIING
REPRESENTATIONAL CONTEXTS IN TEACHING FRACTIONS'

Deborah Loewenberg Bale

Goals of Teaching and Leanting Mathematics
Current discourse about the desirable ends of Mathematics teaching and learning

centers on the development of mathematical understanding and mathematical powerthe

capacity to make sense with and about mathematics (cf. California State Department of

Education, 1985; National Council of Teachers of Mathematics, 1989a; National, Research

Council, 1989). Learning mathematics with understanding according to this view, entails

making connections between informal undestandings=atiatit matheniatical ideas,

quantitative and spatial patterns, and relationshipsand more formal mathematical ideas.

Connections must be forged among mathematical ideas (Fennema;Carpenter, and Peterson,

1989). Students must develop the tools and disposifions to frame and solve problems, reaion

mathematically, and communicate about mathematics (National Council of Teachers of

Mathematics, 1989a).
These goals go beyond understanding of particular ideasplace value, functions,

triangles, area measurement. "Knowing mathematics" includes lmowing how to do

mathematics: 'To know mathematics is to investigate and express relationships among
patterns, to be able to discern patterns in complex and obscure contexts, to understand and

transform relationships among patterns" (National Research Council, 1990, p. 12). Included

in this view of understanding mathematics also are ways of seeing, interpreting, thinking,

doing, and communicating that are special to the community of mathematicians. These
specialized skills and ways of framing and solving problems can contribute to - everyday

confidence arid comintence; they are personally as well as intellectually empowering.

Schoenfeld (1989) summarizes this dimension of mathematical knowledge:

Learning to think mathematically means (a) developing a mathematical point
of viewvaluing the process of mathematization and abstaction and having
the predilection to apply them, and (b) developing competence with the tools
of the tsade, and using those tools in the service of understanding
structuremathematical sense-making. (p. 9)

This sense-making is both individual and consensual, for mathematical knowledge is socially

constructed and validated. Drawing mathematically reasonable conclusions involves the

'This will appear u a chapter in T. P. Carpenter and E. Fenriema (Eds.), Learning Teaching and Assessing Ratiosed Number

C9nrepts.

2Deborah Loewenberg Ball, assistant professor of teacher education at Michigan State University, is a senior researcherwith

the National Center for Research on Teacher Education.
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capacity to make mathematically sound arguments to convince oneself and others of the
plausibility of a conjecture or somtion. It also entails the capacity to appraise and react to
others' reasoning and to be willing to change one's mind fir good reasons.

An Epistemology of Teaching Mathematics for Underrtanding

Contemplating Content and Students
Helping students develop this kind of mathematical power depends on insightful

consideration of both content and learners, -consideration that is both general and sin
Figuring out how to help students develop this kind of mathematical' knowledge depends on
a careful analysis of the specific content to be learned: the ideas, proceduresand ways of
reasoning. Such analyses must examine the particular: Probability, for instance, is a domain
that differs in some important ways from number theory, both in the nature of the ideas
themseives and in their justification, as well as in the kinds of reasoning entailed. Similarly,
an argument in geometry is distinctive from one in arithmetic. Differences in how a given
topic evolved may also be useful in considering how students may encounter and develop its
ideas: That it took the mathematical community centuries to accept negative numbers in
a "felt way" (Kline, 1970) may heip to explain students' struggles to make sense of quantities
that are less than zero (Ball, 19901)).

But analyzing the contentconcepts and ways of knowingis insufficient. Helping
students develop the kind of knowledge described above also depends crucially on
understandings of students themselves and how they learn the particular content. Careful
analyses of the content cannot suffice to map the terrain through the eyes of th prospective
child-explorer. As Dewey (1902) puts it aptly, "The map does not take the place of the
actual journey" (p. 20). The teacher must simultaneously maintain a complex and wide-
angled view of the territory, all the while trying to see it through the eyes of the learner
exploring it for the first time (Lampert, in preparation). How does the mathematics appear
to a nine-year-old? Nine-year-olds' ideas and ways of thinking approach formal
mathematical ideas and ways of thinking unpredictably and, at tinies, with breathtaking
elegance. Teachers, argues Hawkins (1972), must be able to "sense when a child's interests
and proposals . . . are taking him near to mathematically sacred ground" (p. 113). This
bifocal perspective--perceiving the mathematics through the mind of the learner while
perceiving the mind of the learner through the mathematicsis central to the teacher's role
in helping students learn with understanding.
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Representational Contexts for Learning Mathematics
But this contemplation of content and students is not passive. The teacher is not, as

Hawkiris (1972), points out, simply an observer; the teacher's role is to participate in

students' development:

As a diagnostician, the teacher is trying to map into his own the momentary
state and trajectory of another mind and then, as provisioner, to enhance (not
replace) the resources of that mind from his own store of knowledge and skill.
(p. 112)

In order to help students develop mathematical understanding and power, the teacher

must select and construct models, examples, stories, illustrations, and -problems that can

foster students' mathematical development. Lampert (1989) writes of the need to select a

representational domain with which the children are familiar and in which they are
competent to make sensein other words, in which they can extend and develop their
understandings of the ideas, as well as their capacity to reason with and about those ideas.

For instance, because students are familiar with relationships among pennies, dimes, and

dollars, and because they are comfortable with the notation, Lampert argues that money may

provide one _helpful terrain in which they can exwnd their understanding of decimal

numeration. Dewey (1902). writes:

What concerns [the teacher] is the ways in which that subject may become part
of experience; what there is in the child's present that is usable in reference
to it; how such elements are to be used; how his own knowledge of the subject-
matter may assist in interpreting the child'5 need and doings, and determine the
medium in which the child should be placed in order that his growth may be
properly directed. [The teacher] is concerned, not with the subject-matter as
such, but with the subject-matter as a related factor in a total and growing
experience. (p. 23, emphasis added)

The issue of selecting, developing, and shaping instructional representations has been

the focus of a wide range of inquiry (e.g., Ball, 1988; Kaput, 1987, 1988; Lampert, 1986,

1989; Lesh, Behr, and Post, 1987; Lesh, Post, and Behr, 1987; McDiarmid, Ball, and

Anderson, 1989; Wilson, 1988; Wilson, Shulman, and Richert, 1987). Shulman (1986) and

his colleagues (Wilson, Shulman, and Richert, 1987) have developed a constructwhich they

call pedagogical content knowledge: an "amalgam" of knowledge of subject matter and

students, of knowledge and learning. Pedagogical content knowledge includes
understandings 11, ,nut what students find interesting and difficult as well as a repertoire of

representations, tasks, and ways of engaging stydents in the content. Nesher (1989) frames

the problem for the teacher of mathematics in terms of two main needs: "(a) the need for

3
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a young child to construct his knowledge through interaction with the environment, and (b)
the need to arrive at mathematical truths" (p. 188). The teacher must stmcture what Nesher
calls a "learning system"in which learners can explore and test mathematical ideas.
Nesher's framework reminds us that the representation of ideas is more than jutt a catalog
of ideas or a series of modelsrather it is interactive and takes place within a larger context
of ideas, individuals, and their discourse.

Dewey's (1902) problem of "determining the medium," or weaving what I will call a
representational context in which children can doexplore, test; reason, and argue
aboutand consequently, learn, particular mathematical ideas and toois is at the heart of
the difficult work of teaching for understanding in mathematics. Such representational
contexts must balance respectfor .the integrity and spirit of mathematics with an equal and
serious respect for learners, serving as an "anchor" for the development of learners'
mathematical ideas, tools, and ways of reasoning. These contexts must provide rich
opportunities for both individual and group diswurse. All this sounds both sensible and
elegantpulling it off, however, is difficult.

Learning to Teach Mathematics for Understanding
Learning to teach mati.zmatics for understanding is not easy. This paper examines

two reasons for this. First, practice itself is complex. Constructing and orchestratiag fruitful
representational contexts, for example, is inherently difficult and uncertain, requiring
considerable knowledge and skill. Second, many teachers' traditional experiences with and
orientations to mathematics and its pedagogy hinder their ability to conceive and enact a
kind of practice that centers on mathematical understanding and reasoning and that situates
skill in context. Helping teachers develop their practice in the direction of teaching
mathematics for understanding requires a deep respect for the complexity of such teaching
and depends on taking teachers seriously as learners. In this paper I explore and provide
evidence for this claim.

Creating and Orchestrating Fruitful Representational Contexts3
The deliberations entailed in constructing a viable representational context draw on

multiple kinds of knowledge: of the mathematical content, of students and how they learn,
of the particular setting.

3My thinking about representations in teaching has been influenced by conversations over time with Suzanne Wilson apd G.Williamson McDiarmid. Wilson's (1988) work on representations in this teaching of U.S. histori as well as my work withMcDiarraid (cf. McDiarmid, Ball, and Anderson, [19891) have also wended my ideas about this capect of teaching forunderstanding. In addition, the conversations I have had with Sylvia Rundquist over the past two yeartin particular theinsightful questions she asks me about my teachinghave contributed significantly to my work on representation.

4
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Considering the content. Substantively, a representation, should make prominent
conceptual dimensions of the content at hand, not just itt surface or procedural

characteristics. Important to bear in mind is that representations are metaphorical,

borrowing meaning from one domain to clarify or illuminate something in another. As with

metaphorswhere objects are never isomorphic with. their comparative

referentsmathematical ideas are by definition broader than any specific representation.

For example, area modelssuch as a circle model of 1/2:

represent only one of several meanings of fractions (Ohlsson, 1988). Despite thc fact that

this is the most frequent representation that children will give if asked what one-half means,

1/2 also refers to the point halfway between 0 and 1 on a number line, the ratio of one day

of sunshine to every two of clouds, or the probability of getting one true-false test item right.

No representational context is perfect. A particular representation may be skewed

toward one meaning of a mathematical idea, obscuring other, equally important ones. For

example, the number line as a context for exploring negative numbers highlights the
positional or absolute value- aspect of integers: that -5 and 5 are each five units away from

0. It does not necessarily help students come to grips with the idea that -5 is less than 5.

Using bundling sticks to explore multidigit addition and subtracildn directs attention to the

centrality of grouping in place value, but may hide the importance of the positional nature

of our decimal number system.
Beyond the subs'tance of the topic itself, anothe layer ofcomplexity rests with the fact

that represent- tion is fundamental to mathematics itself (Kaput, 1987; Putnam, Lampert, and

Peterson, 1990). One power of mathematics lies in its capacity to represent important

relationships and patterns in ways that enable the knower to generalize, abstract, analyze,

understand. Learning to represent is therefore a goal of mathematics instruction, not just

a means to an end. The teacher must figure out ways to help students learn to build their

own models and representationsof real world phenomena as well as of mathematical ideas

(Putnam, Lampert, and Peterson, 1990).
In teaching fractions, the teacher must weigh the relative advantages in providing

students with structured representational materials (such as fraction bars that arp, already

ruled into certain fixed partition sets) versus having students refine existing models and

develop their own representational media (e.g., drawing drcular regions and subdividing

portions thereof). Take the idea of unit, which is central to fractionknowledge. If students

are comparing 4/4 with 4/8, fraction bal i will force them to the right answer that 4/4 is

more than 4/8:

5
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Tney do not have to consider directly the role of the common unit, for it is implicit within
the material. Yet, if students construct their own models, they may confront and have to
struggle with this essential concept, as one nine-year-old did when he drew, at first:

>

MEM

This drawing made it seem as though 4/4 might be equal to 4/8 and he and his
1:lassmates struggled with the question of whether the rectangles had to be the same size in
order to compare two fractions. One classmate asserted that they did, because otherwise,
"your drawing would convince you of something that wasn't truefour-fourths is really more
than four-eighths." Another student, however, argued that it didn't really matter how big you
made the rectangles because you could see that 4/4 took up all of the rectangle, while 4/8
took up only half of it. This valuable discussion would probably have never come up if the
students were using fraction bars.

Fniithl representational contexts are framed clearly enough to facilitate the
development of sound mathematical understandings and skill in students. Fraction bars, pie
diagrams, number linesall these can help to focus learners on certain key features of
fractions, such as the meanings of fractional terms. At the same time, the context is
sufficiently open to afford students opportunities to exploreto make conjectures and follow
important mathematical tangents. The example above suggests that there are times for
letting learners confront and grapple with conceptual complexity (cf. National Council of
Teachers of Mathematics, 1989b). Managing a suitable tension between focus and openness
in the representational context is crucial.

Considering str7lents and how they learn. Beyond mathematical considerations,
another layer of contemplation emerges in considering what students understand and how
they learn. Nesher (1989) points out that "the child should be familiar with the exemplifying
objects and be able to use familiar language to describe and communicate relations among
these objects" (p. 194). Certain representational contexts, although mathematically

6 11
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reasonable, are nevertheless inaccessible to students (Dufour-Janvier, Bednarz, and Belanger,
1987). For example, although electrical charges may provide a mathematically promising
model for the multiplication of negative numbers, sixth graders are as unfamiliar with the
behavior of electricity as they are with the behavior of negative numbers. As such,
electricity will not make an accessible representation for teaching about negative numbers.

Other representational contexts, while engaging and accessible. to students, are
mathematically distorting or thin. For example, the.everyday idea of borrowing may distract
students from regrouping and place value two-digit subtraction, and may encourage them to
think of numbers in the right: hand column "borrowing" equal-sized numbers from the next
column.'

Putting representational contexts into use. Representational contexts are not static
and do not stand alone. They offer "thinking spaces" for working on ideas. In order to be
viable and useful, these thinking spaces must be furnished and developed jointly by teachers
and students. Language, conventions, and other mental props are necessary. For example,
although money and debt may seemto adultspotentially helpful in making sense of
negative numbers and operations on the integers, nine-year-olds may not be inclined to
reconcile debt with cash to obtain a figure of "net worth." Rather than reporting a balance
of -$4, my third gaders were disposed to report that "so-and-so owes his friend $6 and also
has $2 in his pocket," thereby avoiding using negadve numbers at all. Thus, exploiting the
representation successfully requires .figlaring out conventions for its use. I worked to find
language and stories that would encourage students to represent debt differently from
moneyand to want to reconcile the two (see Ball, 1990a).

Similarly, the third graders described above had to construct conventions and
language for using rectangles (which were often representations of brownies or graLam
crackers) to represent, compare, and operate with fractions. To represent fractions, they
developed strategies for making the drawings: Sean conjecturedand others agreedthat
"to make some number of pieces, make one less line." In other words, to make thirds, draw
two lines in your rectangle. Acknowledging that no one could draw perfectly equal pieces,
the children had to agree how fussy to be about the pieces looking equal. They also
straggled witlt whether the rectangles had to be the same size in order to compare them,
and what it would mean to try to combine two different fractional quantities. Real-world
concerns sometimes collided with the mathematical viability of the representatioi For
example, is 3/3 greater than, less than, or the same amount as 5/5? Some children argued
that 3/3 was more because each piece (one-third) was bigger. Ofners argued that 5/5 was
more because there were more pieces. Still others thought that they were the same because;

4In Bari (1968), I desaibe how prospective teachers trying to fmd representational contexts for teaching about regrouping
actually thought *borrowing' was a fruitful repretentation for subtraction because children, would be familiar with borrowing
from neighbors. See below for a discussion of learning to deliberate about representation in pedagogically defensible ways.

7
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each represented one whole brownie. For these rectangles to offer a fruitful thinking space
for children to explore fractions, the representation must be embedded with agreements
about what "more" or "greater" meansthat it is the total quantity, not the number or size
of the pieces.

These thialdng spaces are broadenedand the accompanying issues expandedwhen
multiple representational contexts vre used for a given topic. Teachers and students must
work through the links among them and how one moves from one to another. For example,
using the number line to compare 3/3 with 5/5 presented few problems: The two were
obviously the same. But how that relates to rectangle drawings is not a straightforward
matter for learners. If students conclude, using the number line, that 3/3 is the same
amount as 5/5, they may still think that one is more than the other when using rectangle
drawings. Similarly, some children decided that 2/4 + 2/4 = 4/4, or 1, when they work
with the number linebut that it equals 4/8 whet' they use a regional model:

=MU=
This conclusion arises, not out of a failure of the representation itself, but from lack

of agreement about how to use it. The students who argued that this drawing showed that
2/4 + 2/4 = 4/8 reasoned as follows: There are eight pieces total and four of them are
shaded. This representation matched the students' assumption that, t , add two fractions,
one would add the numerators and denominatorsa fact that mly reinforced their
conviction that what they had done made sense. To reason about addition of fractions using
such area models requires that one agree to hold the unit constant (Leinhardt and Smith,
1985). If the unit is one rectangle, then 2/4 of one rectangle and 2/4 of another rectangle
will fill up one whole rectangle, or 4/4. The students who believed the answer to be 4/8
were looking at two sandwiches as the unit.

The conventions, language, and stories that support the use of a given
representational context are crucial to building valid understandings and connections. In this
case, the teacher could pose a story situation that would provoke students to consider the
importance of maintaining the unitfor example: "Marta ate 2/4 of a sandwich at noon and
2/4 of a sandwich after schooL How much did she eat?" Students might be able to discuss
that she ate the equivalent of one whole sandwich or four quarters of sandwich. They could
also discuss the notion flat she has eaten 4/8 of two sandwichesand thereby reach some.
agreement on the importance of identifying the unitand of choosing a useful unit.
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Teaching as inquiry. Teaching is essentially an ongoing inquiry into content and
learners, and into ways that contexts can he structured to facilitate the development of
learners' un,lerstamlings. Representations are conjectures about teaching and learning,
founded on the evolving insights about the children's thinking and deepening understanding
of the mathematics, and one must inform the other in the construction and use of
representational contexts. In this paper, I examine the pedagogical thinking and work
involved in understanding, constructing, and exploiting representational contexts for learning
mathematics. My thesis is that deliberating about the construction and use of such contexts

is at the core of teaching mathematics for understanding. Finely tuned analysis of the
content, as well as rich knowledge about students and how they make sense of that content,
can and should play a central role in teacher thinking and practice.

To illustrate some of the complexities in thinking through and using representations
of mathematical ideas, I will draw examples from my own teaching. Using myself as the
object and tool of my own inquiry within and about teaching mathematics for understanding,
I teach mathematim daily to a heterogeneous group of third graders at a local public
elementary school. Mai .7 students are from other countries and speak limited English; the
American students are diverse ethnically, racially, and socioeconomically, and come from
many parts of the United States. Sylvia Rundquist, the teacher in whose classroom I work,
teaches all die other subjeds besides mathematics. She and I meet regularly to discuss
individual students, the group, what each of us is trying to do, the connections and contrasts
between our practices. We also spend a considerable amount of time discussing and
unpacking mathematical ideas, analyzing representations generated by the students or
introduced by me, and examining the children's learning.

Every class is audiotaped and many are videotaped as well. I write daily in a journal
about my thinking and work, and students' notebooks and homework are photocopied.
Students are interviewed regularly, sometimes informally, sometimes more formally;
sometimes in small groups and sometimes alone. We have also experimented with the
methodolog of whole-group interviews. I give quizzes and homework that complement
interviews and classroom observations with other evidence of students' understandings. This
paper draws on data from my teaching of fractions during 1989-90?

5Currently, Magdalene Lampert and I are engaged in an NSF-funded project to produce and explore the use of hypermedia
materials in teacher education (Lampert and Ball, 1990). Our aim is to construct a representational context for kenning to teach
in which teachers would develop new ideasand ways of thinking, new questions and things to consider, said new senses of problems
of practice and ways to work on them. Just as in teaching elementary mathematics, where our goal is to engage students in
significant mathematical inquiry, a reprezentational context for learning to wait grows out of our conception ofteaching practice
m inquiry. We want to provide a terrain in which teachers can explore and investigate as well as acquire tools for their
investigations (e.g., deeper understandings of mathematics, new perspectives on children as learners, new ideu about curriculum
and the teacher's role). Hypermedia technology is promising for the design of sudi a representational context. This work with
Lampert has contributed significantly to my thinking about pedagogical reasoning in mathematics.

9
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Among my aims is that of developing a practice that respects the integrity of both
mathematics as a discipline and of children as mathematical thinkers (Ball, 1990b). I. take
a stance of inquiry ta yard my practice, working on- the basis of conjectures about students
and understandings of the.mathematics; in so doing,.both my practice and my understandings
develop. This paper traces my struggles to engage third graders in developing their
understandings of fractions. My deliberations about my teaching of fractions serve to
illustrate dimensions important to the pedagogical reasoning that underlies :he engagement
of students in representational contexts.

The Construction and Use of Representational Contexts:
Pedagogic Contemplations on Fractions and Third Graders

What representational contexts can help third graders construct useful and sensible
understandings of fractions? In deliberating about this,..two concerns are prominent subject
matterwhat students should learn about the territory of fractionsand learnerswhat
students already know and how they learn.

Rational numbers is a domain in which there has been considerable work and
detailed analysis (e.g., Behr, Harel, Post, and Lesh, in press; Behr and Post, 1988; Kieren,
1975, 1988; Nesher, 1985; Post, Behr, Harel, and Lesh, 1988). Among the analyses, some
agreement exists that fractions may be interpreted (a) in part-whole terms, where the whole
unit may vary; (b) as a number on the number line; (c) as an operator (or scalar) that can
shrink or stretch another quantity; (d) as a quotient of two integers; (e) as a ive; and (f)
as a ratio. Nesner (1985) also includes fractions as representations of probabilities.

In my journal, I worked on a conceptual map of fractionsthe constructs entailed and
the connections between fractions and other important mathematical ideas. As I considered
the multiple senses of fractions, the relations between fractirms and division, multiplication,

measurement, functions, probabilities, numeration, and so on, the complexity of the topic
emerged. As Ohlsson (1988) observes:

The difficulty of the topic is . . . semantic in nature: How should fractions be
understood? The complicated semantics of fractions is, in part, a consequence
of the composite nature of fractions. How is the meaning of 2 combined with
the meaning of 3 to generate a meaning for 2/3? The difficulty of fractions
is also . . . in part, a consequence of the bewildering array of many related but
only partially overlapping ideas that surround fractions (p. 53).

In thinking about the conteh, I also examined the state and school district objectives
for fractions, The state objectives (on which my students are tested at the beginning of
fourth grade) require students to be able to match fraction symbols with area models for
halves, thirds, and fourthsfor unit fractions onlyand that they be able to identify
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congruent parts. The school district's objectives include recoLmition of 1/6 and. 1/12 but,
like the state objectives, they alsO deal only with-unit fractiOns. Students must: beAble to
identify the number above the bar as the numerator and:die number below the bat-as the
denominator and be able to multiply a whole number _by a,unit fraction (e.g., i/2 x _6).
Students etould also, according to these objectives, develop "an understanding of -the
meaning of fractions." Unlike the other objectives, .thiS-oite is a Mouthful; even the breadth

of meanings that can be assigned to fractions. In third grade, I currently focus on the first

three interpretations and applications of fractions:

1. part/ whole the description of dividing a given unit (quantity) into some
number of parts:

Taking 1 to be the unit and dividing it into some number of parts and

taking some number of those parts (e.g., ):

Taking 1 to be theunit, dividing it into some number of parts, and taking

some number of parts of that size (e.g, ):

Taking some other numba of objects to be the unit and dividing the set
of discrete objccts into grotips of some size (e.g.,1of a dozen )

0 Ei 40 40 0 0

2. linear coordinate: fraction as a number, as a point on the numbcrline

3. operator fraction as something that operates on and shrinks or stretches
another quantity

shrinking: I x 6 = 3 stretching: x 4 =10
2 .
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Pit poled-one re:atoning, anctintuitive -use of odds4so. cotne,intO plafas,we-explore
probability. Aware of -the breadth,* the topie of-fractions, Vait- cOg@aut.,oftow-mdy
chokes -may limit -or coitstraitthe horizons of 'their inatheuiaticak..trajectoriek UUccrtain
about-my decisions (Cf. Floden and dark, 1988), these are.open to OngOingieConiideration
and revision.

In addition to contemplating ',the content, 1 also:cOnSideree.'what, nine-year-olds may
have previously encountered about frattionSimscboot-and. out. My fathiliarity with,the
district curritulum and with a range of curriculuM 'materials told me Ahatija schook they
would likely have had limited experience, coniisting primarily of shading predivided regions,
suCh as:

Shade 112 Shade 113

They probably had not had any experience dividing regions themselves and it was quite
possible that they would have bad no experience with any non-unit fractions (i.e., fractions
with numbers other than 1 in the numerator-2/3, for instance). Possibly they would have
examined fractional parts of discrete sets, for example:

0 0 0 0 0 0 0
0 0 0 0 0 0 0

Draw a ring crowd half of the balls.

The fractions examined with discrete sets would probably have been halves, fourths, and
possibly thirds. I was quite sure that they would not have dealt with anything other than
unit fractions: that is, they probably had not had to figure out how many balls were in two-
thirds of the set.

I also considered what I had learned about my students' ideas and thinking from our
work in related topic areas, such as probability. In that context, the students had not
formally quantified probabilities as fractions, but they had compared the likelihood of
particular events. For example:
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From which cup is it more liltely to pull a green chip?'

2 gre en chips 3 greetIchiPs
2 yelloW chips ,4 yellowihips

Thinking about this problem did entail proportiOnal reasoning. When I designed' it, I was
keenly aware that it would simultaneously push the children and help -me learn about their
intuitive fraction knowledge. Problems such as that are deeply useful to me as I wend. my
way across the terrain of third-grade Mathematics with a particular group of learners (cf.

Lampert, in preparation).
I .knew in this case that the problem had the potential to press the children to

consider the numbers of both green and yellow chips in order to anSwer a question that
appeared to be ohly about the green chips. Without representing the probability of pulling
out a green chip from either cup, what was key- was recognizing that the answer lies in
paying attention to the ratio of green to yellow chips in each cup. I had made notes in my
journal about the ways in which different children reasoned about problems such as this.
Some students, for examplejeaioned that pulling a yellow chip was more likely from A than
from B because "there are more yellows than greens in Cup B, so yellow is more likely than
green, but in cup A they are equally likely." Some student& patterns of reasoning did not
consider the multiplicative structure of the problem and argued.that it was gore likely to
pull a green chip from cup B because there were three greens chips in cup B but only two
in cup A.

During the probability unit, students had repeated experience with such questions and
arguments, although no effort was made to record probabilities symbolically. Thus they
never talked about the probability of pulling a green chip out ,of cup B as 3/7. Still, our

work in this area informed my understanding of the students' proportional reasoning in ways
that were helpful as we began our more formal foray into fractions.

Beyond school, I also reflected on what I knew about their out-of-schoaexperiences
with fractions. They likely had everyday experience dividing,things in half but perhaps not
in thirds,lourths, or fifths. They probably had experience with Moneyespecially quarters.
Most would -be comfortable telling -time to the quarter and halfliour.. "Many would have
used fractional cup measwes when baking or cooldng. Across-these contexts, I suspected
that their concept of unit would be strongest:with money, where they would know that a
quarter was 250, a half dollar, SW, and a whole dollar, 100¢. With monev, they understood
that there were four quarters and tWo -half dollars in one dollar.

With time, I was less Certain what they understood explicitly. Even if-they were
familiar with quarter past, quartez to, and half an hour, maw did not kncoihow_ many
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minutes there were in a quarter how or a half hour. Nor was I certain they would know
why we speak of quarter hours, that is, that an hour has 60 minutes and thata.quarter of
an hour is called a quarter because it is 15 minutes, which is 1/4 of 60 minutes. From
baking experiences, I knew that with measuring cups, the children used "quarter' or "third"
or "half" as names for the different size cups, rather than is proportional or relational terms.
For the most part, they did not know to expect that there would be four quarter-cups in a
whole cup.

What did I know about my third-graders' understandings based on these experiences?
I saw that their fraction knowledge was scattered across a range of in- and out-of-school
contexts, their understandings situated in particularuses (Brown, Collins, and Duguid, 1989).
Most also had some generalized understandings. For example, their understanding of one-
half tended to be quite robust: they were able to consider both one-half of a whole unit and
one-half of a set. Many were able to locate 1/2 on a number line and most could record
something like 1/2 to represent one-half. At the same time, many of them also generalized
one-half to apply to any part of a whole. Harooun,6 for instance, when working on the
problem, "How much can each person have if there are four people trying to share five
brownies equally?," offered additional evidence of this way of thinking. He drew four
people:

and five brownies

O 000

0 0 0 0 0
He explained that he divided each brownie in half and gave everyone a half, which he
recorded as:

O 000
half half half half

He repeated this, adding another half to the pile of brownies for each person:

O 000
half half half hillf

half half half half

6A11 names used are pseudonyms and are drawn appropriately, to the anent possible, from the indMdual children's actual
linguistic and ethnic backgrounds.
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Then,he took the last brownie and divided itinto "little pieces":

and recorded these "little pieces" as halvel, too:

0000
half half 'half half

half half half half

half half half half

Harooun's conclusion was that the four people would each get "three- halves." In the
discussion, the other students agreed with Etarooun's solution. Some children distkited hi
labeling the little pieces halves. Eventually, there was consensus that, because he had
divided the brownie into four pieces,, these were fourths. This seethed' td be a new, but
sensible, term to the third-graders. I had seen little evidence that third graders had anything
other than a fragile, schoolish- knowledge of thirds-and fOurths. fifths, eigi#12S; ;tenths, 'and
so on, were basically unfamiliar and theirunderstanding,of halves, thirds, and fdurths did not

tend to set tip the construction of other fractiont. "Half" was more a-quantitative habit of
mind than an,explicit concept.

their ways Of thinking about number based on their iminersion in whole numbers was
another source of insight Or me. Again, from my notes on.earlier, mathematically related
work tknew-thatthey assunied that:the number line represented the:thimber system, a set
of-discrete points,_ that,there were- no numbers botween,the dots. The neitt nninber after 1
was 2 , ,and -after 2, obsiously 3. They tilso 'were, in= the`habit of thinking.sithply-of nUmbers-

as representing, quantitiet; "tvio" cOuld,refer to .tWo pencils;: or1wO -shoet, _Or -two COO4es.

.As We- wthked on Multiplication,, they began to' have experienCe' with, essentially
multiplicatiVe,1thits other than Oner=dozens or weeksfor example.. That "two, ,dozen"
referred:10 24 Objects -watt a diffiCtilt idea fOr some of -them; fcit until noVvi two had meant,

,quite-simply, two Singe thinp. When' we began talking 'about:600ns; ,they tendedas
HarOoun did' abovespealc, only of the Munber-of piece' s, irrespectiveW the.partitioning
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units. By this way of thinking, some thought that 2/5 vias more than 1/2 because there were
more pieces (i.e., two pieces shaded in 2/5 and only One in 1/2):

Content analyses of the domain of rationai numbers (e.g., Behr and Post, 1988;
Kieren, 1988) and research on children's thinking about fractions (e.g., Lefevre, 1986;
Larson, 1988; Mack, 1990; Tierney, 1988) gave me lenses for watching my students, cues for
listening to them. It was in working with the third graders, however, that the most crucial
issues of content and learning emerged for me. Looking at rational numbers from the
perspective of a nine-year-old whose familiar mathematical domain is being stretched and
transformed, I saw aspects of rational number thinking that I had not noticed before. For
example, I realized that making sense of unit fractions (e.g., 1/3, 1/4) requires only one part
of the thinking entailed in comprehending fractions: To understand what 1/4 means, one
need only divide the whole into four parts. Non-unit fractions require complex
compositional thinking: 3/4 entails both dividing into four parts and multiplying the result
by 3. I realized, then, that when children have worked only with unit fractions, they may not
be confronting the essentially compositional nature of fractions.

They had little experience making sense of the written notation of fractions. While
they quickly began to read fractions correctly, they were unsure about what they meant. For
example, Mei interpreted 3/4 as "make groups of three" and then take all but one group
(i.e., 3/4 is one less than 4/4)

They also tended to have imagic (visual) rather than principled knowledge of familiar
fractions; for example, that 1/4 is this shape:

Even when we worked with the number line as a representational context for exploring
fractions, it turned out that some children conceived of one-fourth as a fixed unit of
measurement, like a centimeter, such that it would be impossible, for instance, to represent
fourths on this number line:

1 2 3 4 5

'Mack (19%) reports that fourth graders in her study were able, informally, to compare one-sixth to one-eighth. However,
when they ate presented with symbols and asked to compare 1/6 and 1/8, they invoked their assumptions about whole numbers
and said that 1/8 was morabecause 8 is more than 6. Here my third graders were being asked to comPare fractions where the
numerators differed u well; this suggested that the "number of pieces" strategy led them to incorrect conclusions with non-unit
fractions.
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because one-fourth is this (apparently arbitrary) letigth:

Dividing a quantity into four equal parts has little to do with this way of understanding one-
fourth; the understanding is more visual than conceptual.

The ways in, which numbers function .as scalgs was also highlighted for me as I
discoveredthrough the students' eyesthe essentially relational and referential nature of
fractions. With whole numbers, 5 may mean "five if the referent is one object but sixty if
the referent is one dozen. ,For children, at least,.this idea emerges more prominently as they
engage fractions. One-fourth may Mean 25 (as in "one quarter of a dollar") or 4 (as in "one
quarter of a pound"). Third graders .are able to reason comfortably with one-half (i.e., they
can think flexibly about 1/2 of a dozen, a dollar, a yard, one cookie); but their ideas about
other fractions assume fracdons of oneor .fixed units of some other size (e.g., for some
children, separating the idea of "one-quarter" from the coin is problematic).

This came through most vividly to me one day when we were discussing solutions Tor
the problem, "What is 1/4 of a dozen?" Several people argued that it had to be 1
(misconstruing the meaning of the 4 in the denominator). Other saw that it was 3 and they
managed to convince the Nst of the class of their solltion--except for Lindiwe. His

objection, as he voiced it, w.s, "How can 3 be one quarter of :a dozen when one-quarter is
just a little piece?" and he went to the board and drew:

Lindiwe's misconception underscored my sense that, for 3ome nine-year-olds, in spite of the
fact that they often do get the right answers on school fraction tasks (e.g., "Shade one-third"),
their understandings of fractions may not be principled, but are based instead on
remembered images. For Lindiweand for some of his peersthe little wedge is one-
fo urth.8

The Joint Construction of the Representational Context for Learning Fractions
In nry straggles to create and orchestrate fruitful representational contexts in which

my students could explore mathematical ideas, I have come to see that representational
contexts are co-consuucted and developttd by members of the class. Students enter the

'This is similcr to ddldren's visual spproacit to geometric objev2s. Squares are qpkally not permitted in the category of
rectangle, for rectangles mug have "two long an4 Iwo skinny sides'--exactly what dviy have seen in workbooks.
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representational context that the teacher has set up and, in dealing with a specific problem,
they generate alternative ways to represent or check their understandings. Together,
students and teacher must develop language and conventions that enable them to \ Connect
and use particular representations in situations. They must also develop ways of reaching
beyond and across specific situations to abstract and generalize emergent understandings.
The representations are tools to be wielded in mathematical investigationsin framing and
solving problems, in making and proving general claims. The tools themselves are
sharpened and developed through these processes. Students also sometimes invent or
introduce representations independently.

The: following case from my teaching of fractions illustrates this joint construction of
the representational context. My work with my students over this is also a good illustration
of the pedagogical dilemmas entailed by the horns of Nesher's (1989) dilemma: that, on one
hand, students must construct their knowledge through interaction with the environmentand
that, on the other hand, teachers are responsible to help students develop particular
mathematical ideas.

As we were moving from division toward fractions (on a voyage that parallels the
emergence of fractions in the history of mathematics), I presented the class with the
following problem:

You have a dozen cookies andyou want to share them with the other people in your

family. If you want to share them all equally, how many cooAies will each person in your

arat..±1e2__
I conceived this problem as a thinking space in which I hoped to stimulate students to
develop several key understandings of fractions. I used it on a cusp between an extended
period of explicit work on multiplication and division (which had involved fractions) and the
beginning of some direct work on fractions (which would continue to involve multiplication
and division). The problem involved the partitive interpretation of division (forming a
certain number of groups) and would produce multiple solutions.

For some size families, there would be cookies left over which could be divided
further. Based on what I knew about the families of my students, I realized that we could
encounter fifths, sevenths, and probably both halves and eighths. I also knew that students
would probably be inclined to divide the leftover cookies, but would not necessarily know
what to call the pieces they produced. Still, the children would probably see fifths and
halves as clearly different in amount, hopefully motivating a need to name pieces in
meaningful ways. I anticipated, in short, that this problem would launch us into an extended
exploration of fractions.
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First we had figured out how many cookies everyone in my familywith four
membetswould get. Then the students worked independently or in pairs or threes to
figure out how the dozen cookies would work out in their families.

I heard some discussion about whom to count as a member of one's family. Keith
wondered if he should count his about-to-be-born baby brother or sister while Riba decided
not to count her new baby sister ("She can't eat cookies1"). Sean noted that "my dad doesn't
like cookies" and did not include him. I was also uncomfortable as I overheard some
students questioning other studenis' counts. Mei asked Lucy, "Who's the fourth person?
You only have three people in your family." Lucy, matter-of-factly, responded that she was
counting her mother's boyfriend who was living with them. Someone else challenged
Lindiwe's counting his father since his parents were divorced and his dad was currently living

in Washington, DC.
These conversations seemed intrusively personal and I found myself questioning my

decision to contextualize the problem in terms of families. I had done this because the
divisor would vary nicely among the students, allowing for a range of interesting solutions,
some simpler than others. I knew we would end up discussing division of 12 by 2, 3, 4, 5,
6, and 7and that 5 and 7 would lead us into fractions: my destination. This was exactly
where I now wanted to move from our work with division and multiplication. But, as I
listened, I questioned my choice, for the goodness of a representational context depends on
its social and cultural appropriateness as well as on content and learning factors. I decided
to discuss the issue with the class the next dayto ask them what they thought about the
problem and the interactions that surrounded it.

In this discussion the next day, many children said that the problem seemed okay to
them, that they had not minded the questions that came up around it. Betsy, however,
empathized with how some students might have felt: "Well, for some people I think it would
be sort of being nosy, because if somebody really missed their dad and they didn't want
people talking about it, that would make them feel even sad or something Re that, so it
might not be such a good idea." Tory agreed. At this, Lindiwe spoke up and said that many
people kept arguing with him, saying that he only had four people in his family and he kept
explaining that he was counting his dad. I asked how he felt about thttt and he said that he
liked the discussion of the problem but that he thought people should let him decide whom
he wanted to count in his family: "I think that people shouldn't really be saying how much
you have in your family. They don't know because they've never been to your house. So,
they shouldn't really tell you stuff that they don't even know." After listening to their
comments and thinking about the problem myself, I thought I would not be inc!ined to use
this problem againat least in this particular contextfor it seemed too intrusive and
potentially personal despite the fact that the problem had both believability and significance.
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After I posed the problem, I had walked around the room, listening and watching.
Most children were working in pairs or threes. A few were working alone. During this work
period, I try to learn how different children are thinldng and how they are interacting with
the representational context I have framed. I ask questions, sometimes playing devil's
advocate, sometimes pressing for clarification, explicitness, or depth. tometimes I encourage
them to confer with a classmate. Sometimes I provide a pieceeither information or a
questionto spark or spur further thinking. This phase of the class period is crucial to the
joint development of the representational contexts in which we are working, for it is a
primary source of information about wbat the students are thinking and how they are making
sense.

Cassandra, with five people in her family, was working at the drikboard and was
eager to show me her work on the problem. Adding her own representation, she had drawn
a chart as a tool for and display of her reasoning:

Ch C J P Cs

The letters in the columns, she explained, were the first initials of her family's names. Then
she distributed 10 of the cookies by making hash marks across the columns until each
member of her family had two hash marks, representing two cookies.

Ch C J P Ce

I

I

I

I

I

I

I

I

I

I

Cassandra: Urn, I would have 2 cookies left over so I figur3d what I would do with those
2 cookies? I would split them in half or either just throw them away.

(She drew two circles on the board):

20

2 5



So here's two.

She drew lines in the circles, cutting them first in half and then in quarters-and described
what she was doing:

I cm them in half and then in half again and so there's four.

WED
But I uave 5 people in my family, (adding another line to each cookie)
so there's one more.

And Cassandra added two more lines for eacn person on her chart:

Ch C J
I

P Ce

I

I

I

I

I

I

I

I

i

I

I

I

I

I

I

I I

I

I

I

Then I asked how many cookies she would give ea .:I! person in her family. Cassandra

counted the hash marks: 1, 2, 3, 4.
Cassandra's solution was intriguing. On one hand, she got a close, approximation of

a "right" answer--(2-2/5). On the other hand, she reported it as 4, counting pieces
irrcspective of size. In most classrooms, Cassandra's solution would be judged to be wrong.
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After all, her conclusion in writing was 12 4. 5 = 4. Even after looking at her cookie
drawingswhich may,in fact, represent 2-2/5questions remain about Cassandra's intuitive
understanding of fractions. She realized that the five pieces (inside each of the two leftover
cookies) are not the same size. Did she mean them to be equal but just did not know how
to draw fifths properly? Dividing a circle into five equal parts is no easy task. Or did
Cassandra not recognize that equal size is a crucial aspect of dividing something like cookies
equally? Was she focused only on coming up with the same number of pieces?

A "number of pieces" frame makes sense in many integer-dwision contexts: sharing
a bag of different lollipops, a box of assorted pencils, a pile of books, or a sack of marbles,
for example. In such cases, the collections would probably be considered to be divided
equally if each person got the same number of items. The idea that sharing a quantity
equally involves an equal division cf its mass arises much more prominently only in contexts
where items will be subdivided into fractioral parts. Thus, for Cassandra and her
classmates, that fractions implied equal parts was not necessarily obvious. At this point, as
we began our work on fractions, the centrality of unit was not obvious either. Mack (1990)
reports similar results in her investigation of fourth graders' informal knowledge of fractions:
Students focused on "breaking fractions into parts and treating the parts as whole numbers
rather than as fractions" (p. 28). That evening, I wrote in my journal:

One interesting thing to me about her clever solution was that, contrary to what
I've tended to assume, Cassandra did not seem to focus on the pieces being
"fair"i.e., equal in size. What mattered more, it seemed, was having the right
number of pieces. Is that an artifact of the representation? If she was dealing
with real cookies, would she deal with it in the same way? I remember some
arguments from last year's class when the "number of pieces" frame dominated
so that 4/8 and 4/16 seemed the same to some people.

In class, after listening to her solution, I debated about how to respond to Cassandra.
Should I question her further about her solution? She was not at all dissatisfied with it and
it made compelling sense in many ways. Yet I thought I saw an opportunity to respect hcr
genuine attempt to distribute 12 cookies among the five members of her family and, at the
same time, extend her thinking by helping her develop some new tools to accomplish that
goal.

I saw that the face that the problem entailed cookies encouraged the use of a circle
representationan unfortunate obstacle, since drawing equal parts inside a circle is
technically difficult. This difficulty makes it harder to determine whether a child intends to
divide the circle equallyand just does not know howor whether the child is even
considering the importance of equal parts. I decided to adjust the representational tool and
suggested to her that we draw rectangular cookies. It would be easier, I said, to divide them

22 P7

c.



up equally so that everyone would get the same amount of cooldes. Because I wanted to
make sure that the problem remained well-connected to some real situation for Cassandra
as we shaped the context together, we talked for a moment about kinds of cookies that are
shaped as rectangles: hermits, windmill cookies, and brownies. Then I drew:

and asked Cassandra to divide up the cookie for her family. She drew four lines, counting
the now-equal pieces: One, two, three, four, five:

I

Cassandra wanted to call these pieces "halves." The terms we use for fractional parts is a
matter of convention, not invention (Lampert, 1990; Larson, 1988). Cassandra would not
discover, on her own, what to call her pieces. I told Cassandra that we call those parts not
"halves," hut. "fifths." Then I asked hen- if she could think of a reason why that made sense'.
She quickly replied that it made sense because the cookie had been divided into five pieces.
I showed her that the way we write "one-fifth" looked like this: 1/5again, conventional
knowledge. She said that made sense because we had divided it into five pieces and one-
fifth was one of them.

I asked Caszandra if she could divide up the other leftover cookie. She did this.
Then we talked about how much cookie someone would get if they got one piece from each
of the leftover cookies. Looking at the two cookies that had been divided into fifths,
Cassandra realized that each person was to get 1/5 and another 1/5. Concentrating on her
new understanding of something called "fifths," she appeared to be thinking with the symbols,

rather than from her pictures. Cassandra appeared to abandon her more conceptual,
pictorial approach and began thinking in a symbolic mode. Thinking of the denominators,
she began, "5 + 5 is I prompted, "No, think about your picture. One-fifth plus one-
fifth." She paused to think about this, and then said "two of the fifths." Cassandra's
inclinadon to rely on the symbols fits with Mack's (1990) finding that fourth graders'
"isolated knowledge of procedures . . . frequently interfered with their attempts to give
meaning to fraction and procedures" (p. 27). Rather than thinking intuitively about what it
might mean to add one fifth and another fifth, Cassandra switched over to thinking about
adding the numbers in the symbolic form.

I was thinking about what Cassandra understood and how we had together shaped the
representational context, but Mei was tugging at my sleeve to come and see what she and
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Tory had done. I listened to their solutions, still gathering information about how the
children were working within the representational context. Our time was ahnost up. I could
tell from scraps of conversation that we were ready for a group discussion of the problem.
I left Cassandra, asking her to try to figure out how much every member of her family would
get now.

The next day, I opened the group discussion of the problem by asking for volunteers
to give their solutions. Jeannie explained her solution for three people in a family; Maria
agreed with Jeannie's answer and showed a different wayusing a pictureto prove that
three people would each get four cookies. There was no disagreement; several students said
they agreed with both Jeannie and Maria.

I suggested that we next discuss solutions for two people in a family. Then we moved
on to five. I knew that, in addition to Cassandra, Riba, Daniel, and Sean had also been
working on solutions for five people in a family. Riba said she was still working on it, that
Cassandra should present her solution. I was curious in seeing whether and how the group
context would affect Cassandra's current thinking about the problem. We had worked hard
at creating a classroom culture in which it was safe to try out an idea that you did not yet
have full hold of, that you were unsure about, that was fragile. Now in the middle of the
year, the students had grown Ao be quite respectful of one another's thinking and were
patient with Stumbling explanations. They were also inclined to ask questions to understand
how a classmate was thinking before they suggested revisions or disagreed with an idea.

I wondered whether presenting her solution to 12 4. 5 would help Cassandra to
strengthen her understanding of the problemthat her thinking would be clarified through
what she would have to think about in order co explain her solution to the others and
through the questions others might ask. I wanted to see whether, with support from me, if
necessary, she could show what she had done, and get the other students to appreciate the
thoughtfulness and sense of her solution. The complexity of the problet: and its solutions
would tilt the class toward fractions, the direction I wanted to head.

Cassandra went to the overhead and, h,aping over the first part of her solution (that
each person could get two whole cookies), she drew two circlesthe leftover cookies.
Hoping to push her gently, I intervened:

Ball : Cassandra, are you going to use your rectangular cookies?

Cassandra: Uh huh . . . Okay, so alright(and she backed gp to the beginning
of the problem and made the chan she had made on the board
when she was working alone earlier)here's my sister, my brother,
my dad and my mom. Okay, and I have 12 cooldes, so
(distributes the cooldes, making green hash marks on the chart) 1,
2,3,4, 5, 1,2, 3,4, 5 ...
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Ch C J P Ce

1

I I I I

I have two cookies left over so what I do is draw two
cookies . . . I divide them, you all got two cookies apiece
so 1 here, Z 3, 4.

DG

I debated: Should I let her pursue this, dividing the cooldes only into fourths and

have other children argue with her? The group was able to work well to negotiate what

makes sense. But Cassandra would also often tenaciously maintain her point of view. She

would also sometimes falter, erase, and abandon her presentations when a flurry of

questions arose. Wanting to both preEs her thinking a bit and keep her at it, I decided to

support the new explanation instead: I was curious about what role presenting it to others

would have. I also wanted the idea on which Cassandra wassverging,to become part of the

group's working knowledge (Edwards and Mercer, 1989). I reminded Cassandra that she

needed five pieces, not four, and that working with rectangles was easier.

Cassandra: They each got two cookies (pause) draw the other two that was
left over from the 12 . . . put five lines, so it . . . here's one
cookie there, put 2, 3, 4, and 5. Then the same here, 1, 2, 5, 4
and 5 so . . .

LLLLL WI
Cassandra put two more hash marks under (ach person's column on her chart, but used

orange marker instead of green this time. These orange marks represented the fifths as
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distinct from the whole cookies, progress from yesterday's work when 2-2/5 seemed, to her,
to be 4.

Ball : So how much did each person get?

Cassandra: Two-fifths.

Ball : (pointing at the chart) What are those green marks? What kind of
cookies are those green marks?

Cassandra: Two whole.

Ball : Two whole cookies and the orange marks are?

Cassandra: Two-fifths.

Ball : Two-fifths cookies. Okay. Comments and questions for Cassandra?

Turning the discussion over to the students is a typical routine in our discourse. In
trying to help students develop the capacity to determine for themselves whether something
makes sense mathematicallyrather than relying on the teacher or the text (cf. Lampert,
1989), I deliberately structure our discussions so that students respond to one another's
ideas, comments, and solutions.

The other students seemed to think that what she had done made sense. To press
the students' understanding of the importance of unit, I asked why Cassandra didn't say that
each person would get four cookiesthere were four .hash marks under each column.
Temba said he wasn't sure, showing me that this was not obvious to everyone. Tory said
that "they're split in half- so that wouldn't be four cookies because they're not whole
cookies." Others nodded.

I was both pleased and concerned with Tory's answer. On one hand, she was
recognizing that the unit was changing and that you could not count both whole cookies and
"half-cookies" as wholes: two whole cookies and two pieces was not four. On the other
hand, she-was also still referring to any part of a whole as a "half," a common habit among
the third ,graders. I asked for comments on what Tory had said.

Mei said that ,she agreed. I pushed: Did anyone have an idea why those little
orange hash marks weren't called "halves"? Lucy explained that halves were bigger than
fifths. My ears perked up, for the notion that fractions with larger denominators are geater
than those with smaller denominators (e.g., 1/8 is geater than 1/3) is common among
elementary students. I heard in Lucy's assertion a space into which we sould move more
deliberately, a place in which the class could begin to extend their explicit, conceptual
understanding of fractions. (Indeed, about two weeks later, two students brought forward
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the idea that "With fractions, the bigger the number on the bottom, the smaller the piece,"

a conjecture that another. student quickly and spontaneously illustrated with models of 1/2,

1/3, 1/5, 1/7, 1/9 and 1/15.)
It was, near the end. of class. fkan raised his hand. "I ,think that to: draw some

number of pieceslike four" and he got up-from his seat and went to the 'bbard. He

drew a rectangle. Turning to the class, he xontinued. "To draw four pieces, you just draw

one less linethree." And he drew three lines inside the rectangle. "Because if you drew

four lines"and he drew one more line"you would have five pieces, not four." I asked

what others thought about Sean's- conjecture. Several peoplit said that they agreed with

Sean, that they had found the same thing when thei were maldng their drawings.

Betsy said she agreed, too. "And I have a different way to show it," she said. She

picked up a pair of scissors and a piece of scrap paper. 'This is a rectangle," she said. "If

I make just three cuts, I will have four pieces." She cut the pieces, carefully, and then stuck

them against the chalkboard with magnets.

People seemed intrigued, and some found her argument funny. But not everyone was

convinced that this would always work. Whether or not something was alviays true was a

question they had learned to ask when considering a mathematical generalization.

Consideration of Sean's conjecture continued across several days, although many children

began using it as they constructed their drawings. When I asked Daniel to explain why his

drawing representeri fourths, he explained that he had drawn a rectangle and ptit three lines

in it. Riba argued, one day, that Sean's conjecture would always work because one line (or

cut) always gave you "an edge"that is, the other side of the region you are cutting. A few

more were convinced by this logic. I was pleased that the children's use of area models for

fractions had, among other things, generated opportunities for pattern finding and

conjecturing such, as this,
But difficult pedagogical questions about developing and structuring the use of

representations continued to pop up. A few days later, I was standing by Maria's desk,

watching her work on the problem of the day. L saw that she, struggling with the English

words involved, had made a series of pictures of different fractions: 2/3, 4/5, 6/10, 3/11).

She had drawn vertical lines inside circles:

41) 4 6

I had noticed that other children had been making similar pictures, in spite of my

attempt to push them toward rectangular models when we discussed Cassandra's solution to

the cookie problem. I thought hard about what to do with Maria and the others. I could
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see that the students were genuinely excited by these new numbers. The pictures werehelping them in figuring out one sense of what the numbers meantthat is, according totheir won 4 definition, that the bottom number told you how many parts and the, topnumber how many "to take away." Contemplating their working definition helped- to focusmy deliberations.

The teacher is constantly in the position of having to listen to what her students arethinking and understanding and, at the same time, keep her eye on the mathematical
horizon. Looking to that horizon, I could see that both the pictures and the definition offractions were limited and problematic. These pictures did not divide equal parts. The
numerator does not always indicate how many parts to "take away" from a whole. But, Irealized, the children who were dividing rectangles were also, of course, not dividing intoequal parts. They said things like, "Pretend it's equal." Such agreements were critical,
otherwise drawings would have been entirely impossible.

Wereor shouldthe circles be regarded differently? After all, dividing circles sothat the pieces are equal is much more complicated than doing so for rectangles. Yet, asa mathematical community, the students do need to agree on assumptions and shortcuts oflanguage that facilitate communication. The students' explanation of fraction symbolsandwhat it suggested about their understanding of fractionswas also heading them for trouble,soon, in dealing improper fractions. As one student wailed, in trying to deal with 8/4, "ifyou take something and divide it into four parts, you can't take eight of theml"
When agreements within the discourse unknowingly (to the students) entailmathematical confusions or miscomeptions, the teacher must be able to recognize them andto deliberate about the trade-offs. I decided, for the moment; t.z-i-let the issue of circles passand, instead, to urge directly the use of rectangles, saying that rectangles were "easier touse." With respect to the students' wwicing definition of fractions, I decided to present thestudents with improper fracticus r began with the simple problem, "Which is more-2/4

or 4/2?" confronting them with a question that I thought would provoke a revision of theirworking understanding of fractions. I chose 4/2 for the provoking example of an improperfraction because I suspected that their robust intuitive understanding of halves wouldprovide a semantic key for some students. Thinking about 4/2 as "four halve was likely tomake sense and convincingly dislodge the impossible alternative"divide something into 2pieces and take 4 of them." Using thirds or fourths might not offer this same wedge fortheir sinking.

We wended our way from the initial division vf-cookies problem into a seriousexploration of fractionsas parts of wholesincluding discrete sets, as numbers on thenumber line, and as operators. My decisions about repreventatinnwhich to introduce, andhow to structure their use, as well as how to respond-to and shape the representations thatthe children brought-remained at the heart of my deliberations about the work.
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Preparing Teacher:1,W_ Construct Representations!
Contexts tor:reaching Mathematics

Situations that mathematics teachers .facesuch- as Cassandra's solution, Maria's
circle pictures, or the group's working definition of fractionshighlight the complexity of
constructing and using -fruitful representational. contexts.' for helping, students develop
understandings of mathematics. TN examples in this paper spetlight the necessity for
teachers to be able to hear and so mathematically what students are thinking. 'Teachers
need to have multiple lenses and tools with-which to deliberate about courses of action.
They need to recognize, for example, that although equally spaced' vertical Ines inside, a
rectangle yield equal-sized pieces, inside a circle they do not. Teachers, need:to appreciate
the value of Maria's xplorations through the drawing of different *actions and to think
abow what might be gainedand what lostif she were to work with more structured
materials (e.g., fraction.bars).

Teachers need to be able to hear the fallacies embedded in a definition of fractions
that states that the top number is the amount you "take away" and be-. able to deliberate
about what to do to help learners expand and deepen their underitandings. Still, no
answers, no certainties await us in deliberating about fruitful representations pi-their uses
(cf., Ball, 1988; Floden and Clark, 1988). In helping students learn to understand and
reason with fractions, justifiable decisions about representations=their construction, use,
and adaptationmust be the product of a process of reasoning that, can interweave deep
understanding of fractions, and geometry, and measurement with ideas about mathematical
reasoning and notions about nine-year-oldswhat they understand and hoW they learn, what
hooks them, what they might find exciting or interesting.

Current evidence about prospective and experienced teachers' understandings,
assumptions, and ways of thinking about representation suggests that many do not focus on
these sorts of considerations. Even as we become more sensitive in our understandings of
the range of teaching that constitutes good practice, and of the accompanying inherent
uncertainties and dilemmas (Floden and Clark, 1988; Lampert, 1985), we will need to
attend with increasing care to what it will take to help people who have been steeped in
traditional practice and conventional views of knowledge (Cohen, 1988) learn to teach
mathematics for understanding.

What do we know about teachers of mathematics? There has been a recent growth
in attention to and research on what prospective and experienced teachers 'know and
believeabout mathematics, learners, learning and teaching (e.g. Ball, 1988, 1990b, in
press; Borko, Brown, Underhill, Eisenhart, Jones, and Agard, 1990 Carpenter, Fennema,
Petersen, and Carey, 1988; Leinhardt and Smith, 1985; Martin and Harel, 1989; Peterson,
Fennema, and Carpenter, in press; Peterson, Fennema, Carpenter, and Lod, 1989; Schrani,
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Fciman-Nemser, and Ball, 1989; Schram, Wilcox, Lanier, and Lrippan, 1988; Simon, 1990;
Thompson, 1984; Tirosh and Graeber, 1990). In addition to providing insights into what
they know and believe, these studies also begin to help us understand prospective and
experienced teachers' representations and ways of reasoning. It is out of the interweaving
of what they know and care about that their selection and use of representation is spun.
What do they notice, consider, take into account? What decisions do they make about
representation? These questions offer yet another critical perspective on the question of
what teachers bring with them to teacher education related to the teaching of mathematics
(Ball, 1988).

Two findings emerge consistently from these studies of teachers' knowledge and
patterns of reasoning. One is that making mathematics fun and eng4ing is the central
concern for many beginning and experienced teachers. Assuming that mathematics is not
interesting to most students, they think that their role is to find ways to correct for that. In
their study of eight prospective middle school teachers, for example, Borko et al. (1990)
found that making mathematics class fun was central to these teachers' ,pedagogical
reasoning. These researchers report uncovering a "pervasive belief" among the prosrective
teachers they studied that mathematics is inherently boring and hard to learn. In search
of games that would lighten the load for students, the prospective-teachers justified their
choices most 'often in terms of how they would motivate or engage students rather than
based on concerns for the mathematical content.

The prospective teachers whom we have interviewed ,(Ball, 1988; NCRTE, 1988)
have also tended to be most concerned either with engaging students' interests or with being
direct and clear about the specific mathematical conte..1. In these studies, we interviewed
elementary and secondary teacher education students on five different university campuses.
The interviews were complemental with questionnaire data on a larger sample that
included the sample of students who were interviewed. like Borko et al. (1990), we found
that many of the prospective teachers relied heavily, if not exclusively, on concerns for
student interest: What will students find fun or interesting? What will they be able to
relate to? The propective teachers' focus on the learner was threaded with the assumption
that if children are having fun or are able to "relate" to the material, they will learn.
Making the contexts for learning mathematics fun was a top priority for many, rather than
the links between the mathematics and students' thinking,

A second finding is that teachers' own mathematical experiences and understandings
have not emphasized meaning and concepts. Although many teachers express commitments
to focusing on concepts and emphasizing reasoning, a sizable proportion fmd that their own
understanding of mathematics limits their ability to do so. Steeped in mathematics classes
that stressed memorization and rules, these teachers face the need to revisit and revise the
ways in which they leathed mathematical ideas and procedures. For example, Borko et al.
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(1990) report that the prospective middle school mathematics teachers they followed talked
consistently about the importance of concepts and meaning. Yet, even after their math
methods course, they had trouble explaining why certain procedures, such as division of
fractions or multiplication of decimals, work. They stumbled in trying to model
mathematical concepts and procedures with concrete materials, pictures, or stories. When
they used concrete models r pictorial representations in their teaching, they tended to use
such representations rather perfunctorily and primarily as a means to keep and maintain
students' attention and interest.

Like the prospective teachers interviewed by Borko and Brown (1990) and their
colleagues, our prospective teachers' representations were also influenced by their own
understandings of mathematics (e.g., of fractions, division, place value, area). Many of them

were unable to unpack the conceptual underpinnings of the content, even when they
completed teacher education. They also tended to continue to conceive mathematics as a
body of rules. For examplk, at the conclusion of their studies, 69% of the elementary
teacher candidates (n = 83) across our five sites were unable to select an appropriate
representation for a division of fractlz-% expression (e.g., 2-1 /4 + 1/2) from among four
alternatives. And only 55% of the 22 secondary teacher education studentsmathematics
majors or minors-were able to select an appropriate representation at the end of their
program.

Although these prospective teachers' responses revealed that they, too, had come to
value manipulatives, and pictures, and diagrams, they were often unable to make use of
these materials because of the thinness of their own mathematical knowledge. When asked
what made representing division of fractions difficult, these teacher education students
commented that it was hard (or impossible) to relate it to Leal life because, as one said,
"you don't think in fractions, you think more in whole numbers " Another remarked, "I can't
think of anything in the real world where you can divide by a fraction." Their stumblings
were pakiful at times as they struggled to nialte sense using a mathematical background
that had been "direeted," as one student said, at getting the right answer, not at
understanding why. Several commented that they didn't "like" fractions.

Studies of experienced teachers show that, as with prospective teachers, their
assumptions about learners and their understandings of mathematics also shape the
representational contexts they create (e.g., Ball, in press; Heaton, 1990; Leinhardt and
Smith, 1985; Peterson, Fennema, Carpenter, and Loef, 1989; Schram, Feiman-Nemser, and
Ball, 1989; Thompson, 1984), although "fun" is not always the dominant criterion. Like

prospective teachers, many experienced teachers laud the use of manipwatives (Cohen, in
plass; Peterson, Fennema, Carpenter, and Loef, 1989; Schram, Feiman-Nemser, and Ball,
1989). Often they justify the value of manipulatives by explaining that "when students see
concepts concretely, they will remember them better (e.g., Cohen, in press; Schram,
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Feiman-Nemser, and Ball, 1989). Heaton's (1990) case study of Sandra Better spotlights an
experienced fifth-grade teacher who eagerly gathered and used innovative activities. Her
purposes, however, were focused primarily on motivating her students, especially girls; the
mathematics for which the activities were -designed tended to be distorted in the process.

Upper elementary grade teachers do, in general, seem less inclined to use concrete
or visual representations than are primary teachers (Ball, in press; Remillard, 1990;
Wiemers, in press; Wilson, in press). Experienced elementary teachers' orientations to and
understandings of mathematics are also influential on the ways in which they represent
mathematics. Leinhardt and Smith (1985) report that, although the teachers they
imerviewed could produce algorithms, they often did not understand the underlying
mathematical concepts and relationships. This is not surprising when one considers 'that
these rules were what was emphasized when they went to school. Teachers whose own
understandings of the mathematics they teach is grounded in rules and algorithms tend to
focus on mnemonics and ether devices to help pupils remember the steps, rather than to
create contexts for unpacking meanings (Ball, in press; Leinhardt and Smith, 1985;
Remillard, 1990; Wilson, in press).

Teachers already have orientations to their role, to the nature and substance of
mathematics, to what helps students learn. They already have patterns of reasoning and
concerns that drive the kinds of decisions and compromises they make as they teach
mathematics. These patterns are often quite different from what might be entailed in trying
to interweave consideration of students' thinkingwith close analysis of the content to create
productive representational contexts that can help students to develop mathematical
understandings. For instance, a focus on making mathematics fun will justify some
representations that are not grounded in meaning, that offer little opportunity for
exploration or connections. Similarly, an orientation to and understanding of mathematics
as rules and algorithms does not support a search for or use of conceptually grounded
representational contexts.

Analyses of teachingsuch as the analysis explored in this paper of the pedagogical
reasoning underlying the construction of representational contextscan help teacher
educators and teachers consider the terrain of practice. Yet such analyses as this one ars-
also insufficient. Changing one's practice is not a matter of merely acquiring information
and techniques. Teachers who -currently focus on devices that are catchy and that help
students remember steps and rules cannot learn to construct the kinds of representational
contexts explored in this paper simply by deciding to do so. Neither, even worse, can they
construct such contexts merely by being exhorted to do so. The task is complex and
uncertain. And taking teacheis seriously as learners,-considering where they arewhat they
already know and believe and how they : reason, in relation to both content and
studentstogether with what they are trying to do is key for those who would recommend
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changes in the practice of elementary mathematics teaching. Moreover, we need to
continue to explore what kinds of experiences, supports, and structures can help teachers
develop and change their practice.

Conclusion
Helping to develop new practices of mathematics teaching is no mean feat. %search

can contribute to our work in this area; five lines of inquiry seem especially important.
First, we need more theoretical and empirical research on representations in teaching
particular mathematical content. For a given domain or topic, we need to construct and
study an array of such representations and the contexts that might be structured for their
use in classrooms. We need to map out conceptually and study empirically what students

might learn from their interactions with them.
Second, we need to understand more about the processes of pedagogical deliberation

in teaching mathematics for understanding. What kinds of dilemmas and issues
arisewithin particular mathematical content areas as well as more generely?
Understanding what is entailed in trying to weave together concerns for mathematics with
concerns for learners can contribute to helping people learn to teach.

Third, we need to understand better the role of mathematical understanding in
teachers' pedagogical reasoning. 'What kinds or qualities of mathematical knIvaledge
influence teachers' capacity to hear and interpret students' ideas and thinking? What kinds
and qualities of mathematiml lmowledge support teachers' capacity to construct and use
fruitful representational contexts?

Similarly, we need to learn more about the kinds and qualities of knowledge about
learners and learning that contribute to teachers' ability to teach mathematics for
understanding. What kinds or qualities of understandings, what dispositions and skills,
influence teachers' capacity to hear and interpret students' ideas and thinldng? What do
teachers need to understand and be sensitive to in constructing and orchestrating helpful
representations?

Final is the learning-to-teach question. What are a',...ernative ways of helping people,
whose entire experience with mathematics has been rule bound, often discouraging, and
unsuccessful, learn to feel differently about themselves and to develop the dispositions,
skills, and knowledge necessary to construct and use fruitful representational contexts in
ways that go beyond nialdng math class fun? How can they learn to transcend their own
experiences with mathematics to consider other learners' experiences of and with
mathematics?

I close this paper by returning the reader to the teacher's seat. The following coda
returns to and pulls up the paper's central themesof the interwoven threads of listening
mathematically to children, sometimes following and sometimes gently pressing them
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onward, and of the issues entailed in figuring out, constructing, and using representational
contexts in that process.

Coda9

Betsy : (working with Jeannie) How can we have this? (points to 4/2, written
on the board)

Jeannie : I don't know.

Betsy : Four twoths?

Jeannie : We take something and divide it into two parts . . . and take four of
those parts?

Betsy : I'm confused.

Jeannie : Me too.

Sheena : (walks up) Four halves, isn't it?

Betsy : Yeah, four halves! Halves are two parts. So . . .

Jeannie: So we need two cookies and cut them each in half, then we have four
halves.

One, two, three, four. Twoths, I mean halves.

Overhearing this corwersation, I realized the distance these girls had come. Beginning
with an intuitive, inexplicit, and visual notion of one-half that they could draw, use and
write, I had helped them travel into a new domain of numbers. Suddenly, looking back, the
familiar looked, for a moment, strange.19 One-twoth? But their comprehension of fractions
had evolved into principled understanding of part-whole relationships and the symbolic

9This is taken from my dassroont after about two-and-a-half weeks of working formally on fractions.

Hi would ble to thank Janine Remillard for remarking how the fact that 1/2 suddenly looked like "one-twoth" is not unlile
the ways in which young dtildren twerrnmIlixe as they wend their understandings in learning language. For example, a child
may correctly say wi weneuntil she discoven the "-Wm conjugation for the regular put tense. Then she is hIcely to go through
a phase of saying goad.' Similarly, nay daughter, when she wu four, was suddenly unable to write "45° correctly, although she
had been able to do so for several months. Inateed, I saw her, pausing, snd then write "405*an outgrowth of her new
undentanding of place value that had replaced an earlier, routine, rreognition of two-digit numerals.
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notation for fractional quantities. And, consequently, a "2" in the denominator was no
longer taken for granted: It had taken on explicit meaning. Ahead_of these.students still
lie many excirsions in the domain of rational numbersinto different ihterpretations and
applications of rational numbers, as well as arithmetic with the rationals. They are
launched now, with tools and ways of thinking that have built on and challenged the
informal understandings they held,

2
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